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ABSTRACT
A small GTPase RhoA and its downstream effectors Rho-
associated protein kinases (ROCK) signaling pathway activation 
mediate smooth muscle contraction. ROCKs inhibit myosin light 
chain phosphatase (MLCP) dephosphorylation and therefore 
reduce relaxation. However, nitric oxide (NO) that is produced 
and released from endothelial cells has an inhibitory effect on the 
ROCK pathway in vasculature. Studies in which ROCK activity 
was inhibited by variety of pharmacological agents (HA1077 or 
Y-27632) have shown that it has some critical effects on systemic 
diseases like hypertension or diabetes mellitus. Indeed this activity 
may show isoform specificity (ROCK1 or ROCK2) dependent on 
the pathology. Therefore, in vascular pathogenesis ROCK pathway 
with its isoforms also need to be considered due to its direct effects 
on the vasoconstriction. 
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INTRODUCTION
Rho-associated protein kinases (ROCKs) play a critical role in 
smooth muscle contraction and relaxation. After activation of small 
GTPase RhoA its effector protein ROCK mediates contraction. Brief-
ly after a signal arrives to cell membrane and activates membrane 
receptors or voltage operated Ca2+ channels (VOCC) free cytoplas-
mic Ca2+ concentration increases. Then Ca2+ binds to calmodulin and 
activates myosin light chain kinase (MLCK). MLCK phosphorylates 
myosin light chains (MLC), which are the regulatory subunits of the 
myosin heads.
    MLCK phosphorylates (MLC) the subunits of the myosin heads. 
Phosphorylated MLCs enable the cross bridges between myosin and 
actin and so contraction occurs in smooth muscles[1,2]. On the other 
hand RhoA mediated ROCK is the other mediator of contraction with 
Ca2+[3]. Once activated ROCK provides continuation of contractile 
activity by inhibiting MLC phosphatase (MLCP) which dephosphor-
ylate MLC and induces relaxation in smooth muscle cells. Together 
with Ca2+, ROCK pathways precisely control the vasoconstriction. 
In the arteries smooth muscle contraction is directly effects blood 
pressure by regulating the vessel diameter and tension[1,4]. In addition 
to vasoconstrictor effectors, endothelial derived Nitric Oxide (NO) 
is a vasodilator agent for smooth muscle cells which regulates the 
relaxation through cGMP pathway and also reduces ROCK activity 
and thereby contraction[5-8] (Figure 1). In the regulation of the vas-
cular tonus these vasoconstrictor and vasodilator pathways mediate 
contraction. In recent years many studies has shown that Rho Kinase 
pathway should be taken into consideration in treatments of vascular 
diseases[9,10].
    ROCK consists of two isoforms ROCK1 and ROCK2. ROCK1 
enzyme is expressed in a plenty of different tissues like lung, kidney, 
stomach whereas ROCK2 is mostly expressed in heart, brain and 
skeletal muscle[11]. Cellular localization of the ROCK1 and ROCK2 
also show diversity. ROCK1 is mostly localized at plasma membrane 
but ROCK2 at centrosomes of smooth muscle cells. At cardiomyo-
cytes ROCK2 localized at intercalated discs, and at skeletal muscle 
cells Z-discs and sarcoplasmic reticulum[12].
    Although, they have high genetic homology in their kinase domain 
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Table 1 The contribution of ROCK pathway onto the contraction of 
smooth muscle. ROCK enhance contraction by phosphorylating MLCP. 
This inactive form of MLCP could not dephosphorylate MLC which leads 
to attenuation of the muscle relaxation. ROCK activity is reduced with the 
NO through cGMP pathway. Abbreviations: PLC: Phospholipase C, IP3: 
Inositol (1,4,5)-trisphosphate, eNOS: Endothelial nitric oxide synthase, 
MLC: Myosin light chains, MLCK: MLC kinase, MLCP: MLC phosphatase, 
ROCK: Rho kinase, NO: Nitric oxide.

(92%)[13], Yoneda et al[14] (2005) showed that they have isoform spe-
cific functions even in the same cell. According to this study ROCK1 
is more active in focal adhesion and fiber formations rather than 
ROCK2 in primary rat embryo fibroblasts. Conversely, ROCK2 is the 
primer player in phagocytic activity. In another study it was shown 
that ROCK1 and ROCK2 have distinct roles in adhesion and dif-
ferentiation in keratinocytes[15]. Also the experiments performed with 
the cells which derived from ROCK1 and 2 knockout animals, was 
shown that ROCK 1 acts in MLC2 phosphorylation and cell detach-
ment, whereas ROCK2 in actin cytoskeleton stabilization[16]. Their 
mechanistic difference was indicated by Wang Y et al[17] (2009) that 
ROCK2 can bind directly to the myosin-binding subunit (MYPT1) 
of myosin phosphatase but not ROCK1. This difference reflects that 
ROCK1 use intermediate components for MLCP inhibition and this 
fringed pathway selection makes harder to understand the ROCK ac-
tivity. 
    However lack of the isoform specific ROCK blockers (HA1077 
and Y27632 are nonspecific blockers of ROCK) make difficult to 
distinguish the functional roles of the isoforms. But such a critical 
pathway that regulates constrictive mechanisms in vascular system 
deserves more precise evaluation. Therefore in this review we tried 
to we focus on these functional differences between two isoforms in 
vasculature from diseases perspective.

ROCK ISOFORMS IN ARTERIAL AND PUL-
MONARY ARTERIAL HYPERTENSION 
Smooth muscle cells primarily regulate vascular volume and thereby 
blood pressure in the aorta. The role of the vasoconstrictors on the 
hypertension is a detailed examined in many studies concluded 
ROCK also play a major role in persistency of the high pressure in 
aorta[2,18].
    It was shown in the hypertensive animal models that ROCK medi-

ated vasoconstriction is involved arterial hypertension by blocking its 
function with Y-27632[19]. Other selective ROCK inhibitor HA1077 
named as fasudil is believed to be a key therapeutic for human use. 
In one study dealing with hypertensive patients it was shown that the 
fasudil induce a vasodilator effect on the arterial pressure[20]. Also in 
a study Fukumoto et al[21] showed the effects of the fasudil on the pa-
tients with pulmonary arterial (PA) hypertension. The treatment with 
fasudil hydrochloride caused a slight decrease in the PA hypertension. 
    In both of these arterial high pressure diseases differences in the 
expression levels of ROCK1 and ROCK2 were observed. The im-
munostaining experiments ROCK2 (but not ROCK1) showed that 
its expression increases in arterioles of the lung sections taken from 
the PA hypertension patients[22]. The same study indicated that the hy-
poxia induced PA hypertension with vascular smooth muscle specific 
ROCK2 gene knockout mice, the right ventricular systolic pressure 
was significantly reduced versus control. Their findings indicate the 
importance of ROCK2 for the development of hypoxia-induced PA 
hypertension. Also ROCK2 gene silencing was improved erectile 
function on spontaneously hypertensive rats suggesting ROCK2 
inhibition can be used as a specific therapeutic target for vascular 
dysfunctions caused by hypertension[23]. 

ATHEROSCLEROSIS
When dealing with this very complicated inflammatory disease 
we see that on tunica intima, the layer surrounded with the 
formations such foam cells (monocytes/macrophages) that decrease 
vessel diameter and even make it more stiffening[24,25]. Impaired 
endothelium activity (endothelium dysfunction) causes dysregulation 
of NO release, which was thought as a major responsible factor for 
the initiation of atherosclerosis[26,27]. According to the study of Anju 
Nohria et al[28] ROCK inhibition with fasudil caused endothelial 
dependent vasodilation in the patients with coronary artery disease. 
Their measurements with brachial artery ultrasonography suggest 
the relation between endothelium activity and ROCK inhibition 
in atherosclerosis. In another study with mice ROCK inhibition 
with Y27632 results a protection against atherosclerosis by 
reducing significantly size of the atherosclerotic plaque formation 
significantly[29].
    The individual roles of ROCK1 and ROCK2 in atherosclerosis 
tried to be explained in several studies. ROCK1 knockout was 
decreased atherosclerotic lesion formations in aortas from the bone 
marrow (BM) derived macrophage transplanted LDLr knockout 
mice[30]. While the experiments with ROCK2 lacking in the cultured 
BM differentiated macrophages was shown the importance of 
ROCK2 in the foam cell formations[31]. 

DIABETES 
Type independently, diabetes mellitus (DM) patients frequently 
suffer from the complications of circulatory system diseases such as 
cardiovascular or other vascular diseases. These complications may 
accompany with hypertension, atherosclerosis and thereby some 
ischemic diseases or systemic dysfunctions (peripheral, pulmonary, 
renin-angiotensin)[32-35]. It was shown that Rho kinase has a promoter 
effect on Ca2+ sensitive vasocontraction with PKC in STZ induced 
DM model studies[36]. Also in the study by Sandu OA et al[37] (2001) 
the interaction of insulin with Rho kinase from phosphatidylinositol 
3-kinase (PI3-kinase) and iNOS activated NO-cGMP pathway was 
specified in vascular smooth muscle cells (VSMC). According 
to them insulin receptor activation inhibits ROCK activity by 
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the NO pathway and a defectiveness in this pathway in diabetes 
and hypertension may lead an impaired relaxation with increased 
ROCK activity and resulting vasoconstriction. Also from the Rho-
kinase activity experiments it was observed that arteries from 
Zucker diabetic fatty (ZDF) rats or incubated with high glucose 
concentrations, ROCK activity increase parallel with the glucose 
concentration[38]. Rikiteka et al (2005) also has shown the correlation 
between vascular endothelial cells (HSVECs) and ROCK activity 
that increases in high glucose[39]. In the same study the high levels 
of Plasminogen activator inhibitor-1 (PAI-1) protein expression 
induced with hyperglycemia decreased in ROCK1 knockout (ROCK 
I+/−) murine lung endothelial cells. While PAI-1 is a risk factor in 
many vascular diseases[40], the effect of ROCK on the expression of 
this protein in hyperglycemia will also show the key role of ROCK 
activity in vascular dysfunctions.
    In DM induced circulatory system diseases endothelial dysfunction 
which led impaired NO bioavailability causes impaired vasodilation. 
Many study show the effect of the ROCK pathway on the endothelial 
dysfunction and which then leads to impaired relaxation. In DM 
induced vascular endothelial dysfunction (VED) Rho kinase 
inhibition with fasudil improved eNOS/NO dependent vasodilation 
is stimulated by acetylcholine[41]. Also in diabetic retinopathy, a 
microvascular endothelial dysfunction, it was found that high glucose 
concentration has increased ROCK activity in retinal endothelial cell 
line, RF/6A cells[42]. 
    There are also ROCK1 and ROCK2 isoform specific studies 
in DM. Yao L (2013) by partly deletion both isoforms showed 
that ROCK1 is more effective in diabetic mice aorta according to 
vasorelaxive response to acetylcholine[43]. However in endothelial 
cells of rat thoracic aorta ROCK2 protein expression was found 
higher in DM with respect to the control group[44]. This difference 
may reflect different functional properties of ROCKs in the regulation 
of vascular smooth muscle contractions in DM.
    Overall ROCK is a key player of many cellular functions. In recent 
years growing studies elicited its role in regulation of blood pressure 
in the vessels and therefore should be considered along with other 
contraction parameters. The isoforms ROCK1 and ROCK2 show 
branched functions, and regulate many diverse cellular activities on 
the circulatory system cells. Therefore, particularly in the treatment 
of cardiovascular diseases ROCKs with their isoforms should be 
taken into consideration because of their direct interventions on 
vasoconstriction
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